MOLECULAR MECHANICS (MM3) CALCULATIONS ON DISULFIDES

KUOHSIANG CHEN **AND** NORMAN **L.** ALLINGER*

Department of Chemistry, School of Chemical Sciences, University of Georgia, Athens, Georgia 30602, U. S. A.

An MM3 parameter set was developed for disulfides so as to permit the force field representation of these molecules with respect to geometries, including conformations, vibrational spectra and heats of formation.

INTRODUCTION

Disulfides are of particular interest because of their occurrence in proteins, where they have an important function in establishing structure, and also in other biologically active molecules. The MM2 force field \dagger was parameterized for disulfides many years ago $1,2$ and the present work is concerned with updating that parameterization to the MM3 force field. \ddagger .

The disulfides are formally analogous to organic peroxides, although their chemical behavior is notably different in many respects. In the present study, we first examined the simple molecules hydrogen persulfide, methyl hydrosulfide, dimethyl disulfide and methyl ethyl disulfide. Comparisons were made between the structures calculated with MM3 and the experimental and *ab initio* data which are available. Vibrational spectra were used to ensure that the simple compounds were adequately described by the force field, and we then turned our attention to dithiane, tetrathiane and related compounds. The MM3 parameter set devised for these compounds is listed in Table 1.

0 1991 by John Wiley & Sons, Ltd.

Table 1. MM3 parameter set for disulfide compounds^a

^a Atom types are as in MM3.[†] Type 15 is sulfide or disulfide sulfur, 44 is a hydrogen attached to sulfur, and 1 and 5 are sp³ carbon and carbon attached hydrogen respectively. Parameters not given here (for hydrocarbons)³ are incorporated into MM3 already.

> *Received 16 January I991 Revised I1 May 1991*

^{*}Author for correspondence.

t The MM2 force field is summarized in Ref. 2. The original program (MM2(77)) is available from the Quantum Chemistry Program Exchange, Creative Arts Building 181, 840 State Highway 46 Bypass, Bloomington, Indiana 47405, Program 395. The latest version of MM2, referred to as MM2(87), is available to academic users from QCPE, and to commerical users from MDL (see next footnote).

[†]The MM3 program is available to all users from the Technical Utilization Corporation Inc., 235 Glen Village Court, Powell, Ohio 43065, and to commercial users only from Molecular Design Ltd., 2132 Farallon Drive, San Leandro, California 94577. The current version is available to run on most types of computers, and interested parties should contact one of the distributors directly.

Table 2. The vibrational spectra of simple disulfides

Table 2. *(Continued)*

Table 2. *(Continued)*

1050	1033	-17	А	$CH3(-C)$ def.
1050	1016	-34	A	$CH3(-C)$ def.
1030	1016	-14	А	$CH3(-S)$ def.
1030	1012	-18	A	$CH3(-S)$ def.
969	973	4	A	$C-C$ str.
775	841	66	A	$CH2$ rock.
698	703	5	A	$C-S$ str. (Me)
668	660	-- 8	Α	$C-S$ str. (Et)
507	511	4	A	$S-S$ str.
	355		A	$S-C-C$ bend.
---	290		А	$H - C - C - S$ tors.
	247		A	$S-S-C$ bend. (Me)
$\overline{}$	208		A	$S-S-C$ bend. (Et)
	182		A	$H-C-S-S$ tors.
	112		A	$C-S-S-C$ tors.
	62		А	$C-C-S-S$ tors.
RMS		30		

^a Cited in Ref. 8.

Vibrational analysis

The calculated and experimental vibrational frequencies related to the disulfide parameterization are summarized in Table 2.

RESULTS

Hydrogen persulfide

Both microwave^{9,10} and gas phase electron diffraction studies on this molecule have been reported. It was found to be in a C_2 conformation with a dihedral angle of approximately 90° with respect to the S-S bond. There is an *ab initio* calculation $12,13$ with a $3-21G^*$ basis set available in the literature for the energy barrier. We also calculated the moments of inertia of this compound, which were in fairly good agreement with microwave data. The experimental and *ab initio* results and the corresponding MM3 structures are shown in Table 3.

Methyl hydrodisulfide

The structure of this compound was determined by the microwave (MW) method. **l4** Again, the energies were fit to the *ab initio* calculation with a 3-21G* basis set. The MM3 and experimental results are listed in Table 4.

Dimethyl disulfide

Both MW¹⁵ and gas phase electron diffraction $(ED)^{16,17}$ structural data are available for this compound. The experimental and MM3 results are shown in Table *5.* The exact barrier about the S-S bond is uncertain. However, all studies agree that the conformation with an approximately 90" dihedral angle *(gauche* form) is

Table 3. The structure of hydrogen persulfide^a

	MW(r _e)	$ED(r_{\alpha})$	MM3
$S-S$	2.055(1)	2.055(1)	2.0614(90)
			2.0728 (ecl.)
			2.0570 (anti)
$S-H$	1.327(3)	1.352(10)	1.3371(90)
			1.3372 (ecl.)
			1.3366 (anti)
SSH	$91 \cdot 33(50)$	91.95(50)	$92 \cdot 16$ (90)
			94.02 (ecl.)
			91.94 (anti)
HSSH	90.60(5)	90.62(5)	90.6(90)
			0.0 (ecl.)
			$180 \cdot 0$ (anti)
	Moments of Inertia		
	MW ^b	MM3	Error $(\%)$
I_{x}	0.5714	0.5781	1.17
I_{ν}	12.0396	11.9668	-0.60
I_z	12.0443	11.9721	-0.60
Energy			
		Ab initio $(3-21G^*)^{12}$	MM3
90		0.00	0.00
anti		5.67	5.85
ecl.		8.18	7.97
Dipole moment			
	$Exp.$ ¹³	MM3	
	$1 \cdot 17$	1.265	

"Bond lengths in A; angles **in** deg.; moments of inertia in lo**(- 39)GM*CM**2; energy in kcal mol-'; dipole moments in D; $MW = Microwave$; $ED = electron diffraction$. $A = 146,858 \cdot 170(32) \text{MHz}$, $B = 6970 \cdot 430(3) \text{MHz}$,

 $C = 6967.689(3)$ MHz.

the most stable. One of the recent *ab initio* studies with a 3-21G^{*} basis set shows¹² that the *gauche* conformer is more stable than the *anti* and eclipsed forms by *5.55* and 11.66 kcal mol⁻¹, respectively, compared with the MM3 results of 5.53 and 11.84 kcal mol⁻¹.

Ethyl methyl disulfide

Experimental infrared (IR), Raman and ED studies of this molecule have been reported. **A** number of theoretical calculations have also been carried out to study the conformational properties of this molecule. The optimized geometries are summarized in Table 6, together with those observed.

There is no report of the rotational barrier height about the S-S bond for this molecule. MM3 calculations show that the *gauche* form is more stable

Table 4. The structure of methyl hydrodisulfide^a

	MW ¹⁴		MM3				
$S-S$	2.038		2.0502(90)				
			2.0620 (ecl.)				
			2.0465 (anti)				
$S-C$	1.823		1.8166(90)				
			1.8198 (ecl.)				
			1.8160 (anti)				
$S-H$	1.339		1.3369(90)				
			1.3357 (ecl.)				
			1.3367 (anti)				
SSH	98.3		92.02(90)				
			93.77 (ecl.)				
			91.93 (anti)				
SSC	$102 - 5$		102.89(90)				
			104.92 (ecl.)				
			$102 - 73$ (anti)				
SCH			109.61(90)				
			109.63 (ecl.)				
			109.61 (anti)				
CSSH	88.9		88.6(90)				
			0.0 (ecl.)				
			180.0 (anti)				
	Moments of Inertia						
	MW ^b	MM3	Error $(\%$				
I_x	4.9759	4.9772	0.03				
$I_{\rm v}$	18.8921	19.0660	0.92				
I_z	$22 \cdot 8024$	22.9124	0.48				
Energy							
	<i>Ab initio</i> $(3-21G^*)^{12}$		MM3				
90	0.00		0.00				
anti	5.79		5.76				
ecl.	8.60		8.61				
Dipole moment							
	Exp.	MM3					
		1.511					

^a Units as in Table 3.

 $A = 16865.3758(71)$ MHz, $B = 4442.1185(18)$ MHz,

 $C = 3680 \cdot 3640(16)$ MHz.

than the *trans* and *cis* conformations by *5-56* and 12.88 kcal mol⁻¹, respectively. For rotation of the ethyl group about the *C-S* bond, we investigated six conformations, the *trans* (T) , the *gauche* (G, G') , the skew (S,S') and the *cis* (C) conformers. Several CND0/2 and *ab initio* calculations have previously been used to study the conformational stability here. **A** recent *ab initio* MO calculation for this molecule with a $3-21G + (C, S)$ basis set is available.²¹ An MP2 perturbation calculation was also performed to include electron correlation. All calculations agree that the

"Units as in Table 3.

 $A = 8163.64 \text{ MHz}, B = 2816.42 \text{ MHz}, C = 2570.37 \text{ MHz}.$

most stable conformer is the G form, except the CND012 calculation which gives the *T* form instead. The order of the total energies by MM3 is $G > T > G'$. The order of the T and G' forms is reversed by the large basis set MP2 calculation (Table **7),** but the overall agreement is reasonable.

Di- and tetra-thianes

Having the necessary parameters to deal with disulfides, we turned our attention to compounds containing the S-S linkage in the skeleton. We first looked at 1,2 dithiane, 1,2,4,5-tetrathiane and their derivatives. We examined three conformations for $1,2$ -dithiane - the chair form $(C_2$ symmetry), the twist form (C_2) symmetry) and the boat form $(C_s$ symmetry). The chair form is more stable than the twist and boat forms by

Table 6. The structure of ethyl methyl disulfide

	ED ^{17,19,20}	MM3
$S-S$	2.031(3)	2.0323(G)
		2.0359(G')
		2.0308(T)
$(S-C)_{av}$	1.813(4)	1.8221(G)
		1.8235(G')
		1.8210(T)
$c = c$	1.540(7)	1.5340(G)
		1.5331(G')
		1.5332(T)
$(SSC)_{av}$	103.2(3)	103.46(G)
		104.20(G')
		103.07(T)
SCC	112.4(16)	112.12(G)
		113.18(G')
		110.97(T)
CSSC	84.4(69)	83.7 (G)
		94.2(G')
		83.8 (T)
CCSS	66.8(76)	69.9(G)
		-70.2 (G')
		179.1(T)

Table 7. Energies (kcal mol⁻¹) of methyl ethyl disulfide conformations

 4.44 and 11.96 kcal mol⁻¹, respectively. Similar calculations on 3,3,6,6-tetramethyl-l, 1-dithiane showed similar results, with calculated energies of 2.04 and 21.64 kcal mol⁻¹, respectively. The results are summarized in Table 8.

We then looked at the conformational characteristics of 1,2,4,5-tetrathiane and its tetramethyl derivative.

Table 8. Conformations and energies of 1,2-dithiane and **3,3,6,6-tetramethyl-I,2,-dithiane**

Compound	$Chair(C_2)$	$Twist(C_2)$	$\text{Boat}(C_s)$
Parent	0.00	4.44	11.96
Tetramethyl	0.00	2.04	21.64

These molecules are of interest because of the unusual characteristics of the cyclohexane ring system known experimentally. Cyclohexane has a chair conformer that is more stable than the next most stable form, the twist conformer with D_2 symmetry, by $5-6$ kcal mol⁻¹. **1,1,4,4-tetramethylcyclohexane** has a similar, but smaller, energy difference of about 3 kcal mol⁻¹. The lower energy difference in the tetramethyl derivative comes from the unfavorable axial methyl repulsions in the chair form, but not for the twist conformation. The most stable conformation for 1,2,4,5-tetrathiane is the chair form, which is 3.64 kcal mol⁻¹ below the twist form. This energy difference is somewhat larger than our previous MM2 calculated value of $1 \cdot 1$ kcal mol⁻¹. On the contrary, the tetramethyl derivative has the twist conformation about $0.4-0.8$ kcal mol⁻¹ lower in energy than the chair (from the NMR study by Bushweller²²). Our present calculation gives 1.09 kcal mol⁻¹.

Dithiocins

5H,8H-Dibenzo [d, f] [1,2] dithiocin is another disulfide compound of interest whose X-ray structure has been determined.²⁵ This molecule has a central eight-membered ring which contains the disulfide linkage. Possible ring conformations are the chair and the tub forms. Our MM3 calculation shows that the chair conformation is more stable than the tub by 0.70 kcal mol⁻¹, which is in aggrement with experiment **²²-24** and with earlier molecular mechanics calculations. ' The MM3 results are summarized together with the observed structure in Table 10.

Di-tert-adamantyl disulfide

Next we examined the strained disulfide compound, di-tert-adamantyl disulfide (DTA). Usually, the S-S

Table 9. Conformations and energies of 1,2,4,5-tetrathiane and 3,3,6,6-tetrarnethyl-1,2,4,5-tetrathiane

Compound	$text(C_{2h})$	$Twist(D_2)$	$\text{Boat}(C_{2\nu})$	B oat (C_2)	Half-chair ^a (C_2)
Parent	0.00	$3 \cdot 64$	$21 - 05$	6.70	$17 - 00$
Tetramethyl	l · 09	0.00	$31 \cdot 42$	3.83	15.20

^a Transition state (only one imaginary vibrational frequency).

Bond/angle	Chair	Tub	X-ray (chair)
$S-S$	2.0235	2.0312	2.035(1)
$C-S$	1.8327	1.8440	1.835(3)
SSC	$103 - 09$	104.69	$104 \cdot 3(1)$
CSSC	61.7	83.5	$56 \cdot 4(2)$

Table 10. The structure of 5H, 8H-dibenzo [d, f] [1,2] dithiocin^a

 $^{\rm a}$ Bond lengths in Å, angles in deg.

Table 11. The structure of di-tert-adamantyl disulfide (DTA)

	X -ray 26,a	X -ray b	MM3
$S-S$	2.048(7)	2.041	2.0454
$C-S$	1.84(2)	1.840	1.8467
$<$ SSC	106.8(13)	$107 - 0$	106.69
ω cssc	110.5(9)	110.4	$112 - 1$
ω ssc c	70.0(9)	-69.8	$-66 \cdot 1$
ω sscc	$-56.0(9)$	$56 - 3$	$55 - 8$
ω ssc c	$-171.0(9)$	171.0	175.6
ω sscc	53.0(9)	$53 - 1$	55.8
ω sscc	$-69.0(9)$	-68.5	$-66 \cdot 1$
ω sse c	$173 \cdot 0(9)$	173.0	175.6

^a These are the data given in Ref. 26. The signs obtained for the torsion angles from the fractional coordinates are different in part, and wc believe the latter to be correct.

The values were converted from X-ray fractional coordinates given in Ref. *26.*

bond in an unstrained disulfide has a dihedral angle of $80-90^\circ$. A room-temperature X-ray diffraction study has been reported for DTA.²⁶ The X-ray structure is given in Table 11 and compared with the MM3 results. The MM3 torsional angle CSSC is $112 \cdot 1^\circ$, which agrees with the observed value of $110.5^{\circ}(9)$.

Heats of formation

The heat of formation of a compound is one of its fundamental properties. **As** part of this work, we developed a set of parameters to allow the calculation of the heats formation of disulfides, based on the experimental data^{27,28} available. For a set of seven compounds with experimental errors in the range $0.3-0.6$ kcal mol⁻¹, MM3 calculates the heat of formation with an average deviation of 0.20 kcal mol⁻¹. The agreement for this class of compunds is good, but this is in part due to the fact that the number of data fit is small.

The seven compounds used for this work are hydrogen disulfide, dimethyl disulfide, diethyl disulfide, dipropyl disulfide, dibutyl disulfide, diisobutyl disulfide and di-tert-butyl disulfide. We found that the contribution to the heat of formation of an alkyl group attached to a disulfide sulfur was different from that of the same group attached to an isolated sulfur. Therefore, we have to use different structural feature parameters to fit the experimental data. One difficulty is that no experimental heat of formation data are available to determine the value for an iso group

		$S-S$	Best values $=$ $S-S-Me=$	6.430 1.945		$S-S$ —tert = -7.550 $S-S-H =$ 1.880	
			Fixed values	$S-S-sec = -2.850$		$S-S-C = 0.000$ (assumed)	
Wt	POP	TOR	T/R	Exp.	MM3	Diff. $(MM3 - exp.)$	Compound
10	0.00	0.42	$2 \cdot 40$	3.90	3.90	0.00	Hydrogen persulfide
10	0.00	0.42	$2 \cdot 40$	-5.64	-5.64	0.00	Dimethyl disulfide
10	0.20	$1 - 26$	$2 \cdot 40$	-17.70	-17.77	-0.07	Diethyl disulfide
10	0.72	$2 \cdot 10$	$2 \cdot 40$	-27.88	-27.70	0.18	Dipropyl disulfide
8	1.02	2.94	$2 \cdot 40$	-37.69	-38.12	-0.43	Dibutyl disulfide
8	0.74	$2 \cdot 10$	$2 \cdot 40$	-40.69	-40.43	0.26	Diisobutyl disulfide
8	0.00	$1 - 26$	$2 \cdot 40$	-47.13	-47.13	0.00	Di-tert-butyl disulfide

Table 12. The heats of formation for disulfide compounds^a

³ Standard deviation $= 0.204$.

 b S-S = Bond increment of type 15-15.

S-S-tert = Structural feature in which three alkyl groups are attached to an a-carbon.

S-S-Me = Structural feature in which the α -carbon is a methyl group.

 $S-S-*sec*$ = Structural feature in which two alkyl groups are attached to an α -carbon.

S-S-H = Structural feature in which hydrogen is attached to an **S-S** bond.

S-S-C = Structural feature in which carbon is attached to an S-S bond.

			Best values $S-S$ 4.610 $=$ $S-S-Me =$ $2 \cdot 270$ $S-S-sec = -4.260$			$S-S-tert = -5.950$ $S-S-H =$ 0.000 $S-S-C = -1.630$	
Wt	POP	TOR	T/R	Exp. ^b	MM3	Diff. $(MM3 - exp.)$	Compound
10 10 10 10 10	0.00 0.00 0.03 0.04 0.00	0.42 0.42 0.84 0.84 0.84	$2 \cdot 40$ $2 \cdot 40$ $2 \cdot 40$ $2 - 40$ $2 \cdot 40$	3.90 -5.64 -7.08 -16.30 -22.72	3.90 -5.64 -7.08 -16.30 -22.72	0.00 0.00 0.00 0.00 0.00	Hydrogen persulfide Dimethyl disulfide Ethyl hydrodisulfide Iso-propyl hydrodisulfide tert-Butyl hydrodisulfide

Table 13. The heats of formation of disulfide compounds (strainless)^a

"Standard deviation = *O.Oo0.*

b Calculated MM3 values.

attached to a disulfide sulfur. Since we know that the values for tertiary and methyl groups in this case are similar to neo and methyl groups attached to alkane compounds, we can estimate a reasonable structural feature parameter value for the is0 group. The values of the neo, methyl and is0 structural features for alkanes are -6.641 , 1.045 and -2.627 kcal mol⁻¹. The calculated values for tertiary and methyl groups attached to disulfide are -7.550 and 1.945 kcal mol⁻¹. The estimated value for an iso group in a disulfide is -2.850 kcal mol⁻¹. There are two terms added to calculate H_f that will be further explained.² First, we add one TOR increment $(0.42 \text{ kcal mol}^{-1})$ for an S-S bond because the lower rotational barrier is lower than 7.0 kcal mol⁻¹. Second, the POP terms used in the H_f calculation were exactly calculated over all stable conformers for monosubstituted disulfides. Summaries of the heat of formation calculations for both strained and strainless compounds are shown in Tables 12 and 13. The C-S and S--H bond energy terms were carried over from earlier studies on sulfides, 29 and hydrocarbon terms were carried over from earlier studies on hydrocarbons.

ACKNOWLEDGMENT

The authors are indebted to the National Science Foundation (Grant $\#$ CHE 8614548), the National Institutes of Health (Grant $#R24 RR02165$) and Glaxo Inc. for support of this work.

REFERENCES

- 1. N. L. Allinger, M. **J.** Hickey and J. Kao, *J. Am. Chem. SOC.* **98,** 2741 (1976).
- 2. **U.** Burkert and N. L. Allinger, *Molecular Mechanics,* American Chemical Society, Washington, DC (1982).
- 3. N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. *Am. Chem. Soc.* **111,** 8551, 8566, 8576 (1989).
- **4.** M. **K.** Wilson and R. M. Badger, *J. Chem. Phys.* **17,** 1232 $(1949).$
- 5. G. Grassi, M. Tyblewski and A. Bauder, *Helv. Chim. Acta,* **68,** 1876 (1985).
- 6. **S.** G. Frankiss, *J. Mol. Struct.* **3,** 89 (1969).
- 7. K. G. Allum, J. A. Creighton, J. H. S. Green, G. J. Minkoff and L. J. *S.* Prince, *Spectrochim. Acta* **24A,** 927 (1968).
- 8. R. L. Redington, *J. Mol. Spectrosc.* **9,** 469 (1962).
- 9. G. Winnewisser, *J. Mol. Spectrosc.* **41,** 534 (1972).
- 10. *G.* Winnewisser, M. Winnewisser and W. Gordy, *J. Chem. fhys.* **49,** 3465 (1968).
- 11. M. Winnewisser and J. Haase, Z. *Naturforsch.* **23a,** 56 (1968).
- 12. T.-K. Ha, *J. Mol. Struct., Theochem.* **122,** 225 (1985).
- 13. L. A. Eslava, J. B. Putnam, Jr., and L. Pedersen, *Int. J. Peptide Protein Res.* **11,** 149 (1978).
- 14. M. Tyblewski, T.-K. Ha and A. Bauder, *J. Mol. Spectrosc.* **115,** 353 (1986).
- 15. D. Sutter, H. Dreizler and H. D. Rudolph, *2. Naturforsch.* **20a,** 1676 (1965).
- 16. B. Beagley and K. T. McAloon, *Trans. Faraday SOC.* **67,** 3216 (1971).
- 17. A. Yokozeki and **S. H.** Bauer, *J. fhys. Chem. 80,* 618 $(1976).$
- 18. M. J. Aroney, R. J. W. LeFevre, R. **K.** Pierene and **H.** L. **K.** The, *Aust. J. Chem.* **21,** 281 (1968).
- 19. H. E. Van Wart and **H.** A. Scheraga, *J. fhys. Chem.* **80,** 1812 (1970).
- 20. H. E. Van Wart and H. A. Scheraga, *J. fhys. Chem.* **80,** 1823 (1970).
- 21. M. Ohsaku and N. L. Allinger, *J. fhys. Chem.* **92,** 4591 (1988).
- 22. C. H. Bushweller, *G.* Bhat, L. **J.** Letendre, J. A. Brunelle, H. S. Bilofsky, H. Ruben, D. H. Templeton and A. Zalkin, *J. Am. Chem. SOC.* **97,** 65 (1975).
- 23. G. Claeson, G. Androes and M. Calvin, *J. Am. Chem. Soc.,* **83,** 4357 (1961).
- 24. J. D. Lee and M. W. R. Bryant, *Acta. Cryst.* **B25,** 2497 (1969).
- 25. G. H. Wahl, J. Bordner, D. N. Harpp and **J.** *G.* Gleason, *Chem. Commun.* 985 (1972).
- 26. *G.* Rindorf, **F.** S. Jorgensen and J. P. Snyder, J. *Org. Chem.* **45,** 5343 (1980).
- 27. J. D. Cox and P. Pilcher, *Thermochemisrry of Organic 28.* H. Mackle and P. **A.** O'Hara, *Tetrahedron,* **19,** 961 *and Organometallic Compounds,* Academic Press, New **York** (1970).
	- (1963).
	- 29. N. L. Allinger, M. Quinn, M. Rahman and Kuohsiang Chen, *J. Phys. Org. Chem.* **4,** 647-658 (1991).